
www.metacase.com

Choosing the Best Level of
Abstraction for Your

Domain-Specific Language

1 July 2013

Juha-Pekka Tolvanen, PhD

jpt@metacase.com

www.metacase.com

Some (repeated) definitions

 General-Purpose / Domain-Specific

 External / Embedded / Internal Languages

 Problem Domain / Solution Domain

 Graphical / text / matrix / table / maps etc. as concrete syntax

 Static / behavior

 Turing complete / in-complete

 Domain knowledge as first class citizen / naming convention

www.metacase.com

(Your) area of interest = domain

Problem
domain

Solution
domain

Banking Mobile Automotive etc.

DSL needs
to be

narrow,
e.g. Mobile
DSL is too

wide

Android
DSL

Installer
DSL

Conf app
DSL

Loan app
DSL

www.metacase.com

Where at the main benefits?

 More empirical research is needed, but studies show
improvements in:

– Productivity

– Quality

– Process

– Maintenance tasks

– Understanding and communication

– Easier introduction of new developers etc.

 While time-to-market is often the most significant
improvement, many industry cases shows 5-10x
(500-1000%) productivity improvements (see references)

www.metacase.com

Industry experiences

 "The setup effort to create the languages
was a couple of weeks and provided
more than ten times faster speed"

 "The quality of the generated code is
clearly better, simply because the
modeling language rules out errors"

 "The DSML solution makes development
significantly faster and easier than the
old manual coding practices"

Elektrobit

http://www.metacase.com/cases/eads.html

www.metacase.com

Controlled empirical studies

– Built the same system twice: 425% faster

– Built code generator for a second platform: a fraction of time

– Lab study: 6 engineers develop typical features: > 750% faster

– Built the same system twice: 900% faster

– Built the same production system in parallel

– Built several similar systems: Break Even Point = 3,14

http://images.google.fi/imgres?imgurl=http://www.olympia.com.tw/images/PANASONIC_logo.jpg&imgrefurl=http://www.olympia.com.tw/&h=288&w=1300&sz=149&hl=fi&start=17&um=1&tbnid=vp_RKwQSlTT_kM:&tbnh=33&tbnw=150&prev=/images?q=panasonic+logo&svnum=10&um=1&hl=fi&rlz=1T4SKPB_enFI236FI237
http://www.polar.fi/en

www.metacase.com

http://images.google.fi/imgres?imgurl=http://www.olympia.com.tw/images/PANASONIC_logo.jpg&imgrefurl=http://www.olympia.com.tw/&h=288&w=1300&sz=149&hl=fi&start=17&um=1&tbnid=vp_RKwQSlTT_kM:&tbnh=33&tbnw=150&prev=/images?q=panasonic+logo&svnum=10&um=1&hl=fi&rlz=1T4SKPB_enFI236FI237

www.metacase.com

http://www.polar.fi/en

www.metacase.com

www.metacase.com

Telecom services

www.metacase.com

Railway interlocking

www.metacase.com

Radio network testing

 Modeling test cases/test logic and generating test data

www.metacase.com

Voice control

www.metacase.com

Web app testing

www.metacase.com

500 %

1000 %

750 %

600 %

900 %

500 %

600 %

0 %

100 %

200 %

300 %

400 %

500 %

600 %

700 %

800 %

900 %

1000 %

Embedded UI

applications

Mobile phone

software

Phone switch

features

Call

processing

services

Heart rate

monitor

J2EE web

application

Home

automation

Domains

Percent Increase

Productivity increase measured

Comparing to
earlier practice

(typically compared
to coding)

www.metacase.com

Analysis of the cases indicates

 DSL should raise the level of abstraction above the code

 DSL is not using necessarily linear text representation

– Domain and problem solving dictates

– Maps, diagrams, matrixes, tables etc.

 DSL focus on narrow domain

– Exclude outside as much as possible

 DSL for other than producing the code

– Higher abstraction is not applicable only for producing the code
but can also be used for testing, deployment, interaction
design, localization etc.

www.metacase.com

Tooling

 Some sort of tooling is always used, but big differences on
tools, see

– series of Language Workbench Comparison, LWC 2011-2013

– Comparison reports, e.g. tinyurl.com/gerard12: Language
implementation (Eclipse GMF 25 days vs. MetaEdit+ 0.5 days)

 Language creation is the first task but also other issues
need to be handled, like

– integrating multiple languages

– sharing languages

– maintaining languages

– updating specifications made with earlier version of language

– collaboration, like multiple language engineers

www.metacase.com

Summary

 Raise the abstraction as high as possible:
ideally 1:1 to problem domain

 Exclude outside as much as you can

 Refine languages as needed (keep it flexible)

 Use tools that support “agile” language definition

– And allow also models to automatically update to new language
version

www.metacase.com

Thank You!
Questions?

To see various cases, examples, and download
MetaEdit+ tool, visit http://www.metacase.com

http://www.metacase.com/

www.metacase.com

References

 Kelly, S., Tolvanen, J.-P., Domain-Specific Modeling:
Enabling Full Code Generation, Wiley, 2008. DSMbook.com

 El Kouhen, A., Dumoulin, C., Gérard, S., Boulet, P., Evaluation of Modeling
Tools Adaptation, tinyurl.com/gerard12

 Kärnä, J., et al. Evaluating the Use of Domain-Specific Modeling in Practice,
9th DSM Workshop (2009)

 Puolitaival, et al. Utilizing Domain-Specific Modeling for Software Testing,
Proceedings of VALID, (2011)

 Preschern et al. Domain Specific Language Architecture for Automation
Systems: An Industrial Case Study, Procs of Graphical Modeling Language
Development, DTU (2012)

 Safa, L., The Making Of User-Interface Designer, A Proprietary DSM Tool,
Procs of 7th DSM Workshop (2007)

 Sprinkle et al. (eds) IEEE Software, DSL&M special issue, July/Aug, 2009,
including: Kelly & Pohjonen,
Worst Practices for DSM, tinyurl.com/worstDSM

http://dsmbook.com/
http://tinyurl.com/gerard12
http://tinyurl.com/worstDSM
http://tinyurl.com/worstDSM

