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Some (repeated) definitions 

 General-Purpose / Domain-Specific 

 External / Embedded / Internal Languages 

 Problem Domain / Solution Domain 

 Graphical / text / matrix / table / maps etc. as concrete syntax 

 Static / behavior 

 Turing complete / in-complete 

 Domain knowledge as first class citizen / naming convention 
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(Your) area of interest = domain 

Problem 
domain 

Solution 
domain 

Banking Mobile Automotive etc. 

DSL needs 
to be 

narrow, 
e.g. Mobile 
DSL is too 

wide 

Android 
DSL 

Installer 
DSL 

Conf app 
DSL 

Loan app 
DSL 
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Where at the main benefits? 

 More empirical research is needed, but studies show 
improvements in: 

– Productivity 

– Quality 

– Process 

– Maintenance tasks 

– Understanding and communication 

– Easier introduction of new developers etc. 

 While time-to-market is often the most significant 
improvement, many industry cases shows 5-10x  
(500-1000%) productivity improvements (see references) 
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Industry experiences 

 "The setup effort to create the languages 
was a couple of weeks and provided 
more than ten times faster speed" 

 "The quality of the generated code is 
clearly better, simply because the 
modeling language rules out errors" 

 "The DSML solution makes development 
significantly faster and easier than the 
old manual coding practices"  

Elektrobit 

http://www.metacase.com/cases/eads.html
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Controlled empirical studies 

 

– Built the same system twice: 425% faster 

– Built code generator for a second platform: a fraction of time 

 

 

– Lab study: 6 engineers develop typical features: > 750% faster 

– Built the same system twice: 900% faster 

 

 

– Built the same production system in parallel 

– Built several similar systems: Break Even Point = 3,14 
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Telecom services 
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Railway interlocking 



www.metacase.com 

Radio network testing 

 Modeling test cases/test logic and generating test data 
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Voice control 
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Web app testing 
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Analysis of the cases indicates 

 DSL should raise the level of abstraction above the code 

 DSL is not using necessarily linear text representation  

– Domain and problem solving dictates 

– Maps, diagrams, matrixes, tables etc. 

 DSL focus on narrow domain  

– Exclude outside as much as possible 

 DSL for other than producing the code 

– Higher abstraction is not applicable only for producing the code 
but can also be used for testing, deployment, interaction 
design, localization etc. 
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Tooling 

 Some sort of tooling is always used, but big differences on 
tools, see  

– series of Language Workbench Comparison, LWC 2011-2013 

– Comparison reports, e.g. tinyurl.com/gerard12: Language 
implementation (Eclipse GMF 25 days vs. MetaEdit+ 0.5 days) 

 Language creation is the first task but also other issues 
need to be handled, like 

– integrating multiple languages 

– sharing languages 

– maintaining languages 

– updating specifications made with earlier version of language 

– collaboration, like multiple language engineers 
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Summary 

 Raise the abstraction as high as possible:   
ideally 1:1 to problem domain 

 Exclude outside as much as you can 

 Refine languages as needed (keep it flexible) 

 Use tools that support “agile” language definition 

– And allow also models to automatically update to new language 
version 
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Thank You!  
Questions? 

To see various cases, examples, and download  
MetaEdit+ tool, visit http://www.metacase.com 

http://www.metacase.com/
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